Skip to content

第7讲 处理多维特征的输入 源代码

B站 刘二大人 ,传送门PyTorch深度学习实践——处理多维特征的输入

视频中截图

说明:1、乘的权重(w)都一样,加的偏置(b)也一样。b变成矩阵时使用广播机制。神经网络的参数w和b是网络需要学习的,其他是已知的。

2、学习能力越强,有可能会把输入样本中噪声的规律也学到。我们要学习数据本身真实数据的规律,学习能力要有泛化能力。

3、该神经网络共3层;第一层是8维到6维的非线性空间变换,第二层是6维到4维的非线性空间变换,第三层是4维到1维的非线性空间变换。

4、本算法中torch.nn.Sigmoid() # 将其看作是网络的一层,而不是简单的函数使用

5、torch.sigmoid、torch.nn.Sigmoid和torch.nn.functional.sigmoid的区别

python
import numpy as np
import torch
import matplotlib.pyplot as plt

# prepare dataset
xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1]) # 第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,最后一列不要
y_data = torch.from_numpy(xy[:, [-1]]) # [-1] 最后得到的是个矩阵

# design model using class


class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6) # 输入数据x的特征是8维,x有8个特征
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 1)
        self.sigmoid = torch.nn.Sigmoid() # 将其看作是网络的一层,而不是简单的函数使用

    def forward(self, x):
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
        x = self.sigmoid(self.linear3(x)) # y hat
        return x


model = Model()

# construct loss and optimizer
# criterion = torch.nn.BCELoss(size_average = True)
criterion = torch.nn.BCELoss(reduction='mean')  
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(100):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())
    epoch_list.append(epoch)
    loss_list.append(loss.item())

    optimizer.zero_grad()
    loss.backward()

    optimizer.step()


plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()

代码说明 :1、diabetes.csv数据集老师给了下载地址,该数据集需和源代码放在同一个文件夹内。

2、如果想查看某些层的参数,以神经网络的第一层参数为例,可按照以下方法进行。

python
# 参数说明
# 第一层的参数:
layer1_weight = model.linear1.weight.data
layer1_bias = model.linear1.bias.data
print("layer1_weight", layer1_weight)
print("layer1_weight.shape", layer1_weight.shape)
print("layer1_bias", layer1_bias)
print("layer1_bias.shape", layer1_bias.shape)

3、根据评论区的提示,更改epoch为100000,以准确率acc为评价指标,源代码和结果如下

python
import numpy as np
import torch
import matplotlib.pyplot as plt

# prepare dataset
xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1]) # 第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,最后一列不要
print("input data.shape", x_data.shape)
y_data = torch.from_numpy(xy[:, [-1]]) # [-1] 最后得到的是个矩阵

# print(x_data.shape)
# design model using class


class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 2)
        self.linear4 = torch.nn.Linear(2, 1)
        self.sigmoid = torch.nn.Sigmoid()

    def forward(self, x):
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
        x = self.sigmoid(self.linear3(x)) # y hat
        x = self.sigmoid(self.linear4(x))  # y hat
        return x


model = Model()

# construct loss and optimizer
# criterion = torch.nn.BCELoss(size_average = True)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)


# training cycle forward, backward, update
for epoch in range(1000000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    # print(epoch, loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if epoch%100000 == 99999:
        y_pred_label = torch.where(y_pred>=0.5,torch.tensor([1.0]),torch.tensor([0.0]))

        acc = torch.eq(y_pred_label, y_data).sum().item()/y_data.size(0)
        print("loss = ",loss.item(), "acc = ",acc)

传送门 另一个小伙伴的笔记